

Original Article

Antibiotic Resistant Patterns of *Enterococcus* Species Isolated from Clinical Samples in a Nigerian Private Tertiary Medical Centre

***Abdullahi N¹, Oranekwulu MU²**

¹Visiting Consultant Medical Microbiologist to Department of Laboratory Services, Nisa Premiers Hospitals, Abuja, Nigeria; Department of Medical Microbiology, Federal Medical Centre, Abuja Nigeria. ²Medical Laboratory Scientist, Department of Medical Laboratory Services, Nisa Premiers Hospitals, Abuja, Nigeria.

Article History

Submitted: 21/12/2025; Accepted: 25/12/2025; Published: 29/12/2025

*Correspondence: Nasiru Abdullahi

Email: annasuku2012@gmail.com

ABSTRACT

Enterococci cause serious nosocomial infections which are characteristically associated with high mortality rates and treatment challenges because the bacteria are not only innately resistant to some antibiotics but also possess the ability to develop acquired resistance to virtually all clinically beneficial antimicrobial agents. This study was carried out to determine the antibiotics resistant patterns among isolates of *Enterococci* from clinical samples so as to provide knowledge that will inform the appropriate antimicrobial choice for its infections in this setting. It was a descriptive, cross-sectional retrospective study conducted over a period of 18 months (February 2024 – August 2025) at the medical microbiology laboratory of Nisa Premiers Hospital. Laboratory records of all *Enterococci* isolated from various clinical specimens submitted for culture as well as their susceptibility rates to variously tested antibiotics were extracted, reviewed and analyzed. Specimen culture and antimicrobial sensitivity testing of isolates were performed following standard microbiological methods. Forty-one (41) isolates of *Enterococci* were recovered from the various clinical samples processed. Thirty-five (85.4%) of all the isolates were *Enterococcus faecalis*, while 6 (14.6%) were *Enterococcus faecium*. *Enterococci* were most frequently isolated from urine 36 (87.8%). The prevalence rate of vancomycin-resistant *Enterococcus* (VRE) was 27.5%. *Enterococcus* was highly resistant to ciprofloxacin (85.7%) and doxycycline (57.9%), relatively highly resistant to linezolid (25%), but displayed the least resistance to nitrofurantoin (18.7%). In conclusion, the most frequent enterococcal infection was UTI, and *Enterococcus faecalis* was the most frequent species causing infections in this study. There were relatively high prevalence rates of both VRE and Linezolid-resistant *Enterococcus*. There is, therefore, a need for strengthening of antimicrobial stewardship program, implementation of infection control measures and routine surveillance in order to reduce the emergence of resistant strain and control its spread.

Keywords: Clinical Samples, *Enterococci*, Resistant Patterns.

INTRODUCTION

Enterococci are gram-positive, non-sporing cocci, usually arranged as short chains, diplococci, or single ovoid cells. They are facultative anaerobic bacteria that grow on culture media, withstanding a high 6.5% salt concentration and a

wide range of temperatures. They are mostly non-hemolytic, even though some *enterococci* show alpha and beta hemolysis.¹ They are bench diagnosed as catalase-negative, urease-negative, Lancefield group D antigen-positive, esculin hydrolyzing in 40% bile salts, and PYR hydrolyzing.

Article Access

Website: www.wjmb.org

doi: 10.5281/zenodo.18125435

How to cite this article

Abdullahi N, Oranekwulu MU. Antibiotic Resistant Patterns of *Enterococcus* Species Isolated from Clinical Samples in a Nigerian Private Tertiary Medical Centre. West J Med & Biomed Sci. 2025;6(4):437-442. DOI:10.5281/zenodo.18125435.

Intra-species differentiation is based on the fermentation of carbohydrates, hydrolysis of arginine, tolerance to tellurite, motility, and pigmentation.² They live as normal flora in the intestinal tract, mouth and vagina of humans.³ Despite existing as normal flora, *Enterococci* have emerged as a serious pathogen in the healthcare environment. They are one of the ESKAPE group of pathogens that cause various kinds of serious and difficult-to-treat nosocomial infections.⁴ *Enterococcus faecium* and *Enterococcus faecalis* are the main enterococcal species isolated from clinical specimens, accounting respectively for approximately 80 and 20% of enterococcal infections.⁵ These wide variety of serious infections include bacteremia, urinary tract infection, intra-abdominal infections, endocarditis, meningitis, skin and soft tissue infection, among others. *Enterococcal infections, including vancomycin-resistant enterococci (VRE), are characteristically associated with high mortality rates (25–50%) as they usually occur in immunocompromised hosts.*⁶ Enterococcal infections pose serious treatment challenges because the bacteria possess the ability to develop resistance to almost all clinically beneficial antibiotics. Aside being intrinsically resistant to many antibiotics such as cephalosporins, trimethoprim-sulfamethoxazole, clindamycin,¹ *Enterococci* have the ability to develop acquired resistant to different antimicrobial agents like β lactams, aminoglycosides, and glycopeptides such as vancomycin.^{7,8} More worrisome is that infections due to multidrug resistant Gram-positive pathogens including Vancomycin resistant *enterococci* (VRE) whose mainstay of treatment is linezolid have been reported to develop an increasing resistance to this antibiotic.⁹

The prevalence and antimicrobial resistant rates of clinical *Enterococcus* isolates in the healthcare setting vary markedly from one geographical area to another due to local antibiotic prescribing practices, choice of antibiotics for empirical treatment, and the specific resistant *Enterococcus species* circulating in a given geographical area.^{10,11} Even within a given geographical location, the trend of the prevalence of clinical isolates of *Enterococcus*, the predominating species and their susceptibility to various antibiotics might have changed with the passage of time.

Knowledge of antimicrobial susceptibility pattern of *Enterococcus* in any environment is important in informing the choice of appropriate alternative treatment options for infections caused by multidrug strain such as VRE. This study was, therefore, aimed at determining the antibiotic resistant pattern of clinical isolates of *Enterococcus spp* with a view to providing knowledge on the prevalence of Vancomycin-resistant *Enterococci* (VRE) and the empirical treatment options available for Enterococcal infections in this hospital.

MATERIALS AND METHODS

This was an 18-month (February 2024 to August 2025) descriptive, cross-sectional retrospective study conducted at the medical microbiology laboratory of Nisa Premier Hospitals Abuja. In this study, all isolates of *Enterococcus spp.* that were recovered from the various clinical specimens [urine, wound swab, blood culture, ear swab, eye swab, cerebrospinal fluid (CSF), sputum, endocervical swab (ECS), high vaginal swab (HVS), aspirates] received and processed in the laboratory were extracted and analyzed along with their susceptibility to variously tested antibiotics. Specimen culture was carried out by inoculating the specimen on various standard bacterial culture media (Blood Agar, Chocolate Agar, MacConkey Agar and CLED Agar (urine)) and incubated in ambient air at 37°C for 24 hours.¹² Colonies of organisms from culture media with positive growth were identified following standard microbiological techniques.¹³ Antibiotic susceptibility testing was carried out on Mueller Hinton Agar (MHA) in accordance with modified Kirby Bauer disc diffusion method using 0.5 McFarland standard turbidity of the organism. Interpretation of zone sizes of inhibition was in accordance with Clinical Laboratory Standard Institute (CLSI) Guidelines.¹⁴

RESULTS

A total of 41 isolates of *Enterococcus spp* were recovered from all the clinical samples processed. Thirty-five (85.4%) of the isolates were *Enterococcus faecalis*, while 6 (14.6%) were *Enterococcus faecium*. Thirty-six (87.8%) of the isolates were from urine, while the remaining 5 (12.2%) were from endocervical swab. Of the

numbers of variously tested antibiotics, 11 (27.5%) were resistant to vancomycin, 10 (25%) were to linezolid, 6 (85.7%) were to ciprofloxacin, 12 (46.2%) were to levofloxacin, 13 (32.6%) were to penicillin, 6 (18.7%) were to nitrofurantoin, and 22 (57.9%) were to doxycycline.

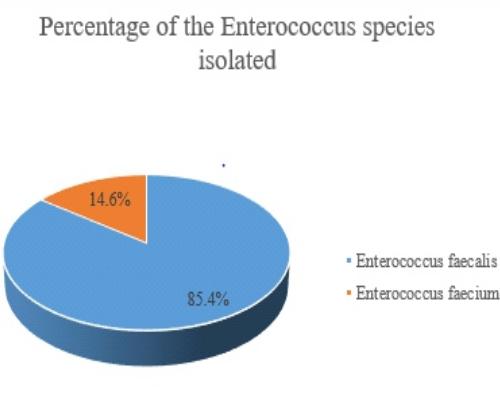


Figure 1: Enterococcal species isolated from the study population

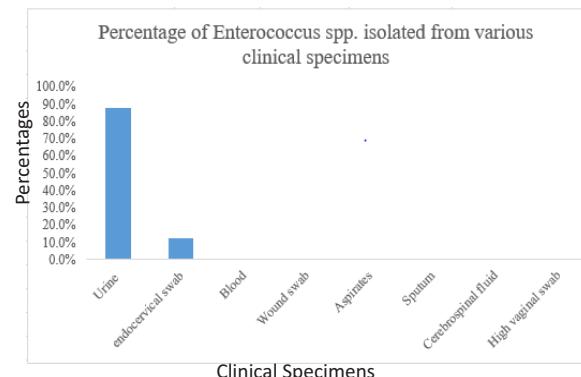


Figure 2: Patterns of Enterococcal species isolated from clinical specimens

Table 1. Antibiotic sensitivity pattern of Enterococcal isolates

Antibiotics	Sensitive n (%)	Intermediate n (%)	Resistant n (%)	Total N (%)
Vancomycin	25 (62.5)	4 (10)	11 (27.5)	40 (100)
Linezolid	30 (75)	0 (0)	10 (25)	40 (100)
Ciprofloxacin	1 (14.3)	0 (0)	6 (85.7)	7 (100)
Levofloxacin	13 (50)	1 (3.8)	12 (46.2)	26 (100)
Penicillin	27 (67.5)	0 (0)	13 (32.5)	40 (100)
Nitrofurantoin	22 (68.8)	4 (12.5)	6 (18.7)	32 (100)
Doxycycline	14 (36.8)	2 (5.3)	22 (57.9)	38 (100)

DISCUSSION

The most commonly isolated species of *Enterococcus* in this study was *Enterococcus faecalis* (85.4%), followed distantly by *Enterococcus faecium* (14.6%). This finding is in agreement with previous international and local studies which also reported *E. faecalis* as the most commonly isolated species from clinical samples, followed by *E. faecium*.^{5,15,16,17,18,19,20} Urine sample recorded the highest prevalence (87.8%) of the isolated *Enterococcus* in this study, followed by ECS (12.2%). This finding concurs with similar discovery in several other prior studies.^{21,22,23} Although the majority (69.16%, 49.6%, and 50.9%) of the *Enterococcus* isolates were respectively recovered from urine samples in these latter studies, ours was far higher (87.8%). While blood and pus samples were the next specimens that gave the highest number of isolates of *Enterococcus* in these studies, ours was ECS. However, in another similar study, the majority of *Enterococcus* isolates were obtained from stool samples¹⁷, which wasn't included in our study. These findings support the fact that *Enterococci* cause different kind of infections such as UTI, bacteremia, wound infections, among others.²⁴

The prevalence of VRE in this study was 27.5%. This finding is in agreement with the pooled VRE prevalence of 25.3% and 26.8% from systematic review and meta-analytic studies in Nigeria and Africa respectively.^{25,26} Similarly, Toru et al and Razaz et al reported VRE prevalence of 22.7% and 24.6% in studies carried out in Ethiopia and Tehran respectively.^{27,28} Different findings also have however been reported by other studies at Kanpur in Northern India, Osogbo, and Benin respectively. The reported prevalence of VRE in these studies were 6.5%, 42.9%, and 60% respectively.^{29,30,31} Similarity or difference in hospital antibiotic policies in these places might be the reason for different prevalence of VRE in those areas.

Though the resistant rate of *Enterococcus* to Linezolid (25%) was relatively low, it is quite concerning as this antibiotic remains one of the last-resort treatment options for serious infections caused by multidrug-resistant (MDR) Gram-

positive pathogens, including VRE. This finding in this study is not surprising as much earlier study by Ndubuisi JC et al in some hospitals in Abuja revealed that 22.0% of the *Enterococcus faecalis* was resistant to linezolid, while 54.1% of *Enterococcus faecium* was resistant to the same antibiotic, both giving an overall resistant rate of 31.3% to linezolid.¹⁷ The relatively low linezolid resistant *Enterococcus* found in this study however, contrasts with findings in India where 65% of Enterococci isolates were resistant to linezolid.²¹ In Lagos and elsewhere outside Nigeria, 97 – 100% of *Enterococci* isolates were happily susceptible to linezolid.^{18,28,32,33,34,35}

Isolates of *Enterococci* demonstrated high resistance to ciprofloxacin (85.7%), doxycycline (57.9%), levofloxacin (46.2%), but gladly displayed relatively low resistance to penicillin (32.5%), linezolid (25%), and nitrofurantoin (18.7%). Therefore, these latter antibiotics could be used as empirical treatment option, particularly for UTI due *Enterococcus* in this environment. The relatively high VRE in this study calls for implementation of antimicrobial stewardship practice, infection control measures and surveillance programs so as to reduce rising enterococci resistance as well as prevent and control its spread.

CONCLUSION

Enterococci were most predominantly isolated from urine in this study. *E. faecalis* was the most significant specie isolated, followed by *E. faecium*. Prevalence rate of VRE was 27.5%, while relatively low resistance rates were recorded against linezolid, penicillin, and nitrofurantoin by the enterococci isolates, making these antibiotics good options for empirical treatment of enterococcal infections in this setting. *Enterococci* isolates exhibited high resistance to ciprofloxacin, doxycycline, and levofloxacin.

RECOMMENDATIONS

Linezolid, penicillin and nitrofurantoin could be chosen for the empirical treatment of the most frequent infection (UTI) caused by this bacteria. Antimicrobial stewardship practice, infection control and surveillance programs should be strengthened in order to stem the emergence of

resistance to these antibiotics and prevent spread of multidrug resistant Enterococci.

Limitation

The laboratory record used to conduct this study did not capture the patients' age, gender and wards/clinics where care was accessed. This would have enriched the study by looking at the age, gender and inpatient vs outpatient distribution of patients with Enterococcus infections as well as the antimicrobial resistance pattern. In addition, phenotypically detected VRE were not confirmed genotypically as the facility lacks molecular laboratory.

Acknowledgement

We appreciate Nisa Premier Hospitals Abuja for granting the permission to retrieve the data used for this study.

REFERENCES

1. García-Solache M, Rice LB. The Enterococcus: a Model of Adaptability to Its Environment. *Clin Microbiol Rev.* 2019;32(2):e00058-18. doi: 10.1128/CMR.00058-18. PMID: 30700430; PMCID: PMC6431128.
2. Sabina Y, Rameez Y, Soma B, Indrani B. Study of enterococcus physiology and their characteristics- A short review. *Journal of Dental and Medical Sciences.* 2022;21(4): 24–29. DOI: 10.9790/0853-2104122429
3. Krishna KV, Koujalagi K, Surya RU, Namratha MP, Malaviya A. Enterococcus species and their probiotic potential: Current status and future prospects. *J App Biol Biotech.* 2023;11(1):36-44. DOI: 10.7324/JABB.2023.110105-1
4. Zhen X, Lundborg CS, Sun X, Hu X, Dong H. Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review. *Antimicrob Resist Infect Control.* 2019; 8:137.
5. Wang JT, Chang SC, Wang HY, Chen PC, Shiao YR & Lauderdale TL. High rates of multidrug resistance in *Enterococcus faecalis* and *E. faecium* isolated from inpatients in Taiwan. *Diagn. Microbiol. Infect.* 2013;75 (4):406–411
6. Zhang Y, Du M, Chang Y, Chen LA & Zhang Q.

.Incidence, clinical characteristics, and outcomes of nosocomial Enterococcus spp. bloodstream infections in a tertiary-care hospital in Beijing, China: a four-year retrospective study. *Antimicrob. Resist. Infect. Control* 2017;6(1):1-11

7. Sparo M, Delpech G & García Allende N. Impact on public health of the spread of high-level resistance to gentamicin-andvancomycin in enterococci. *Front. Microbiol.* 2018;9:3073
8. Sachan S & Anubhaw A. Species prevalence, antimicrobial susceptibility of enterococci isolated from various clinical samples in tertiary care hospital. *International Journal of Health Sciences.* 2022;6:4507-4514.
9. Klare I, Fleige C, Geringer U, Thürmer A, Bender J, Mutters NT. Increased frequency of linezolid resistance among clinical Enterococcus faecium isolates from German hospital patients. *J Glob Antimicrob Resist.* 2015;3: 128-31. doi:10.1016/j.jgar.2015.02.007.
10. Gangurde N, Mane M, Phatale S. Prevalence of multidrug resistant Enterococci in a tertiary care hospital in India: a growing threat. *Open J Med Microbiol.* 2014;4(1):11. doi:10.4236/ojmm.2014.41002.
11. Deshpande VR, Karmarkar MG, Mehta PR. Prevalence of multidrug-resistant enterococci in a tertiary care hospital in Mumbai, India. *J Infect Dev Ctries.* 2013;7(2):155-158. doi:10.3855/jidc.3018.
12. Collee JG, Fraser AG, Marmion BP, Simmons A. Mackie and McCartney Practical Medical Microbiology 1996 14th ed Edinburg Churchill Livingstone:263-74
13. Fingold SM, Baron EJ. Diagnostic microbiology. 10th Ed. Toronto, St-Louis: Moby Company: pp.150-170.
14. CLSI: Performance Standards for Antimicrobial Susceptibility Testing: 29th edition. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2019.
15. Victor NA, Grace MI, Chijioke PA. Enterococcus Isolates in Clinical Samples from In-patients in Uyo, Nigeria. *International Journal of Life Sciences Research.* 2019;7(1):353-358
16. Arias CA, Murray BE. Emergence and management of drug-resistant Enterococcal infections. *Expert Rev Anti Infect Ther.* 2008;6(5):637-55,
17. Ndubuisi JC, Olonitola OS, Olayinka AT, Jatau ED & Iregbu KC. Prevalence and Antibiotics Susceptibility Profile of Enterococcus Species Isolated from some Hospitals in Abuja, Nigeria. *Afr. J. Cln. Exper. Microbiol.* 2017;18 (3): 154-158
18. Dauphin DM, Oluwole MD. Prevalence, antibiotic susceptibility pattern and risks of multiple drug-resistant Enterococcus species in Ojo, Lagos, Nigeria. *N Y Sci J* 2020;13(7):25-32]
19. Orababa OQ, Soriwei JD, Akinsuyi SO, Essiet UU, Solesi OM. A systematic review and meta-analysis on the prevalence of vancomycin-resistant enterococci (VRE) among Nigerians. *Porto Biomed J.* 2021;11;6(1):e125. doi: 10.1097/j.pbj.0000000000000125. PMID: 3384321; PMCID: PMC8055482
20. Abera A, Tilahun M., Tekele SG and Belete MA. Prevalence, antimicrobial susceptibility patterns, and risk factors associated with enterococci among pediatric patients at Dessie Referral Hospital, Northeastern Ethiopia. *BioMed Research International*, 2021;5549847.
21. Mahajan M, Shinde R, Karande GS, Patil S. Prevalence of Enterococcus Species in Various Clinical Samples and Their Antimicrobial Susceptibility Pattern. *Cureus* 2024;16(11): e72836. DOI 10.7759/cureus.72836
22. Sannathimappa MB, Nambiar V, Aravindakshan R, Al-Risi ES. Clinical Profile and Antibiotic Susceptibility Pattern of Enterococcus faecalis and Enterococcus faecium with an Emphasis on Vancomycin Resistance. *Biomedical and Biotechnology Research Journal* 2023;7(2): 283-287. DOI: 10.4103/bbrj.bbrj_38_23
23. Sachin MD, Jigar RK. Prevalence and Antimicrobial Susceptibility Pattern of

Enterococcus Species Isolated in Clinical Samples from a Tertiary Care Centre. JPTCP. 2024;31(7):357–362

24. Sava, G., Heikens, E. and Huebner, J. Pathogenesis and Immunity in Enterococcal Infections. *Clinical Microbiology and Infection*, 2020;10(1):5-10. doi: 10.1111/j.1469-0691.2010.03213.x

25. Wada Y, Harun AB, Yean CY, Zaidah AR. Vancomycin-Resistant Enterococci (VRE) in Nigeria: The First Systematic Review and Meta-Analysis. *Antibiotics (Basel)*. 2020;9(9):565. doi: 10.3390/antibiotics9090565. PMID: 32882963; PMCID: PMC7558171.

26. Alemayehu, T., Hailemariam, M. Prevalence of vancomycin-resistant enterococcus in Africa in one health approach: a systematic review and meta-analysis. *Sci Rep* 2020;10:20542. <https://doi.org/10.1038/s41598-020-77696-6>

27. Toru M, Beyene G, Kassa T, Gizachew Z, Howe R, Yeshitila B. Prevalence and phenotypic characterization of Enterococcus species isolated from clinical samples of pediatric patients in Jimma University Specialized Hospital, south west Ethiopia. *BMC Res Notes*. 2018; 11:281. <https://doi.org/10.1186/s13104-018-3382-x>

28. Razaz RN, Mohabati MA, Khorram AN, Shokohizade L. Antibiotic Susceptibility of *Staphylococcus aureus* and *Enterococcus* spp. Isolated from some Hospitals in Tehran. *Med Lab J*. 2015;9(2):78-84. FA

29. Khanal LK, Sujatha R, Kumar A, Bhatiani A and Singh DN. A study of clinical outcome, prevalence and molecular characterization of vancomycin resistant enterococci (VRE) at a tertiary care centre. *Al Ameen J Med Sci* 2021; 14(1):62-67.)

30. Olawale KO, Fadiora SO, Taiwo SS. Prevalence of hospital-acquired enterococci infections in two primary-care hospitals in osogbo, southwestern Nigeria. *Afr J Infect Dis*. 2011;5(2):40-6. doi: 10.4314/ajid.v5i2.66513. PMID: 23878706; PMCID: PMC3497844.

31. Beshiru A and Uwhuba EK. Abeni B and Kate EU. Prevalence, Molecular Characterization and Risk Factors of Vancomycin-Resistant Enterococci: Evidence from Patients Admitted in University of Benin Teaching Hospital, Benin City Nigeria. *DUJOPAS* 2023;9(3b): 311-321

32. Harshad SN, Anita EC, Harinandan M. Prevalence of various enterococcus species and their antibiotic resistance pattern among urinary isolates in tertiary care center in South Eastern Rajasthan. *IP International Journal of Medical Microbiology and Tropical Diseases*, 2019;5(1):18-22

33. Md SA, Md J & Rashedur R. Examining Antimicrobial Resistance in Enterococcus Species: A Single Center Cross-Sectional Study. *Saudi J Pathol Microbiol*, 2023; 8(10): 257-262

34. Mangukiya PD, Patel VA, Parmar AT. Prevalence of Enterococcus Species in Various Clinical Specimens and it's Antimicrobial Susceptibility Pattern in a Tertiary Care Teaching Hospital of Central Gujarat. *GAIMS J Med Sci* 2025;5(1):18-24

35. Ferede ZT, Tullu KD, Derese SG and Yeshanew AG Prevalence and antimicrobial susceptibility pattern of Enterococcus species isolated from different clinical samples at Black Lion Specialized Teaching Hospital, Addis Ababa, Ethiopia. *B M C R e s N o t e s* 2018;11:793:<https://doi.org/10.1186/s13104-018-3898-0>

Conflict of interest: The authors declare no conflict of interest. The study was self- funded.