

Review Article

Personalised Cancer Treatment: The Era of Precision Oncology - A Comprehensive Review

Ugwu IV¹, *Gbaa ZL², Ngbea JA³, Umobong EO⁴, Omolabake BI², Tsegaha LJ², Otene SA⁵, Gbaa FA⁶

¹Department of Anatomic Pathology, Federal University of Health Sciences, Otukpo, Nigeria.. ²Department of Surgery, College of Health Sciences, Benue State University, Makurdi, Nigeria. ³Department of Anatomic Pathology, College of Health Sciences, Benue State University, Makurdi Nigeria. ⁴Histoconsult Laboratory, Abuja, Nigeria. ⁵Radiology Department, Federal University of Health Sciences, Otukpo (FUHSO), Benue State Nigeria. ⁶College of Health Sciences, Benue State University, Makurdi, Nigeria.

Article History

Submitted: 09/10/2025; Accepted: 01/11/2025; Published: 15/11/2025

*Correspondence: Gbaa LZ.

Email: zulumbaa@gmail.com

ABSTRACT

Personalised cancer treatment, also known as precision oncology, represents a paradigm shift from conventional “one-size-fits-all” cancer therapy towards an approach guided by the unique genetic, molecular, and environmental characteristics of each patient and tumour. Advances in genomics, molecular diagnostics, and bioinformatics have enabled targeted and immune-based therapies that significantly improve outcomes and reduce toxicity. This study was therefore set up to provide a comprehensive review of the principles, clinical applications, current challenges, and future directions of personalized cancer treatment in the era of precision oncology.

Relevant peer-reviewed literature published in the past decade (2015–2025) was reviewed from databases including PubMed, Scopus, and Google Scholar. Emphasis was placed on studies exploring molecular biomarkers, targeted therapy, immunotherapy, and pharmacogenomics across various cancer types. The study found that the integration of molecular profiling and targeted therapeutics has transformed cancer management, with substantial clinical benefits in malignancies such as breast, lung, colorectal, and melanoma. Emerging technologies—including next-generation sequencing, liquid biopsy, and artificial intelligence enhance diagnosis, treatment selection, and real-time disease monitoring. However, challenges persist in accessibility, cost, ethical regulation, and tumour heterogeneity, particularly in low- and middle-income countries. Precision oncology has indeed shown to redefine cancer care, enabling therapies tailored to individual molecular and clinical profiles. Broader implementation requires equitable access to molecular diagnostics, multidisciplinary collaboration, and integration of AI-driven decision tools to realise the full promise of personalised medicine globally.

Keywords: Biomarkers, Cancer treatment, Genomics, Immunotherapy, Personalised medicine, Pharmacogenomics, Precision oncology, Targeted therapy

INTRODUCTION

Personalised cancer treatment, also known as precision oncology, represents a transformative approach that tailors therapeutic interventions to the unique molecular and genetic characteristics of an individual's tumour rather than applying uniform treatment protocols¹. The evolution of this concept

has been driven by rapid advances in genomics, molecular diagnostics, and targeted therapeutics, which have enabled identification of actionable mutations and specific biomarkers that guide therapy selection^{2,3}.

Conventional cancer management relied largely on histopathological classification and empirical

Article Access

Website: www.wjmb.org

DOI: 10.5281/zenodo.18094680

How to cite this article

Ugwu IV, Gbaa ZL, Ngbea JA, Umobong EO, Omolabake BI, Tsegaha LJ, Otene SA, Gbaa FA. Personalised Cancer Treatment: The Era of Precision Oncology - A Comprehensive Review. West J Med & Biomed Sci. 2025;6(4):349-366. DOI:10.5281/zenodo.18094680.

chemotherapy. However, with the advent of next-generation sequencing (NGS) and liquid biopsy technologies, clinicians can now perform real-time molecular profiling, detect minimal residual disease (MRD), and monitor tumour evolution non-invasively^{4,5}. This has paved the way for highly specific treatment strategies such as tyrosine kinase inhibitors (TKIs) for EGFR-mutated lung cancer, HER2-targeted monoclonal antibodies for breast cancer, and immune checkpoint inhibitors for malignancies expressing PD-L1 or microsatellite instability-high (MSI-H) phenotypes^{6,7}. (Table 1)

Despite the remarkable clinical benefits,

implementation of precision oncology remains limited by tumour heterogeneity, emergent drug resistance, high cost, and restricted access to molecular testing in low- and middle-income regions^{8,9}. Moreover, ethical and regulatory issues surrounding genomic data use continue to pose challenges to global adoption¹⁰.

This review critically examines the evolution, molecular basis, diagnostic innovations, and clinical applications of personalised cancer treatment, highlighting key therapeutic advances, ongoing challenges, and emerging opportunities for global integration of precision oncology. (Table 1)

Table 1: Evolution of Cancer Treatment Paradigms

Era	Key Therapeutic Approach	Guiding Principle	Examples
Pre-2000s	Conventional chemotherapy	Non-specific cytotoxic drugs	Cisplatin, Doxorubicin
2000–2010	Targeted therapy	Molecular targets identified	Imatinib (BCR-ABL), Trastuzumab (HER2)
2010–2020	Precision oncology	Genomic profiling and biomarkers	EGFR-TKIs, ALK inhibitors
2020–Present	Data-driven personalised medicine	Multi-omics and AI integration	ctDNA, AI-guided therapy, neoantigen vaccines

The evolution of cancer treatment from traditional cytotoxic chemotherapy to precision oncology has been driven by advances in molecular biology, genomics, and targeted therapy development. The Human Genome Project and subsequent breakthroughs in next-generation sequencing (NGS) paved the way for precision-guided therapeutics and biomarker-based treatment strategies (Table 1). This paradigm shift is summarized through major milestones, including molecular subtyping, immunotherapy, and integration of multi-omics approaches^{1–6,12,21,25}.

Molecular Basis of Personalised Cancer Therapy. The foundation of personalised cancer treatment lies in understanding the molecular alterations that drive tumour initiation, progression, and therapeutic response¹¹. Advances in cancer genomics have revealed that malignancies once classified by organ or histology are, in fact, molecularly heterogeneous, defined by specific driver mutations, epigenetic modifications, and signalling pathway aberrations^{12,13}. These insights have enabled the development of therapies targeting distinct molecular lesions, fundamentally reshaping oncology practice¹⁴.

Genomic and Epigenetic Alterations: High-throughput next-generation sequencing (NGS) has

allowed comprehensive characterisation of somatic mutations, copy number variations, and chromosomal rearrangements across tumour genomes¹⁵. Oncogenic drivers such as EGFR, KRAS, BRAF, PIK3CA, and ALK have become actionable biomarkers with corresponding targeted therapies¹⁶. Similarly, HER2 amplification in breast and gastric cancers predicts response to trastuzumab and other HER2-directed agents¹⁷.

Epigenetic mechanisms, including DNA methylation, histone modification, and non-coding RNA regulation, also influence tumour behaviour and drug response¹⁸. Aberrant promoter methylation can silence tumour suppressor genes such as MLH1 and BRCA1, leading to genomic instability¹⁹. Understanding these alterations has spurred the development of epigenetic therapies such as histone deacetylase (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors, which are now under clinical evaluation²⁰.

Tumour Microenvironment and Molecular Crosstalk: The tumour microenvironment (TME) comprising immune cells, stromal components, and extracellular matrix plays a pivotal role in tumour progression and therapeutic resistance²¹. Crosstalk between cancer cells and the TME via cytokines,

growth factors, and exosomes influences tumour growth and metastatic potential ²². Molecular profiling of the TME has identified immune checkpoints (PD-1, PD-L1, CTLA-4) as therapeutic targets, leading to the success of immune checkpoint inhibitors across multiple cancers ^{23,24}. (Table 2)

Multi-Omics Integration: Recent advances integrate genomics, transcriptomics, proteomics, and metabolomics to provide a systems-level understanding of cancer biology ²⁵. Multi-omics approaches improve biomarker discovery, predict

drug response, and elucidate resistance mechanisms ²⁶. Integration of these datasets through artificial intelligence (AI) and machine learning algorithms is enhancing precision in patient stratification and therapeutic decision-making ^{27,28}. (Table 2)

Overall, the molecular understanding of cancer has transformed therapeutic paradigms from conventional cytotoxic regimens to biomarker-guided precision medicine, marking a cornerstone in modern oncology ²⁹.

Table 2: Major Molecular Biomarkers and Associated Targeted Therapies

Cancer Type	Key Biomarker	Targeted Agent(s)	Clinical Application
Breast	HER2 amplification	Trastuzumab, Pertuzumab	HER2-positive breast cancer
Lung	EGFR mutation, ALK fusion	Osimertinib, Alectinib	NSCLC targeted therapy
Colorectal	KRAS/NRAS, BRAF V600E	Cetuximab, Encorafenib	Predicts anti-EGFR therapy response
Melanoma	BRAF V600E	Dabrafenib, Vemurafenib	Targeted therapy for metastatic disease
Prostate	BRCA1/2, ATM	Olaparib	PARP inhibition in DNA repair-deficient tumours
Haematologic	FLT3, IDH1/2	Midostaurin, Ivosidenib	Targeted acute myeloid leukemia therapy

Recent multicenter analyses have highlighted regional disparities in receptor expression patterns, with variable proportions of ER-PR-and HER2-negative tumors across African and global cohorts (Table 2)⁴⁻¹⁷

Therapeutic Modalities in Precision Oncology

The molecular characterisation of tumours has revolutionised therapeutic strategies, enabling clinicians to tailor treatments to specific molecular aberrations rather than relying on broad cytotoxic chemotherapy ³⁰. The main modalities that define precision oncology include targeted therapies, immunotherapy, gene- and cell-based therapies, and pharmacogenomics-driven interventions, each contributing to improved outcomes and reduced treatment-related toxicity ³¹.

Targeted Therapies: Targeted therapy exploits specific genetic mutations and dysregulated signalling pathways driving tumour growth ³². Small-molecule inhibitors and monoclonal antibodies act on targets such as EGFR, BRAF, HER2, ALK, and PI3K, showing significant benefits in selected patient subsets ³³.

For instance, EGFR-mutated non-small cell lung cancer (NSCLC) responds to osimertinib, while BRAF V600E-mutated melanoma demonstrates a durable response to dabrafenib and trametinib ³⁴. Similarly, HER2-positive breast cancer patients benefit from trastuzumab, pertuzumab, and trastuzumab deruxtecan, which have markedly

improved survival outcomes ³⁵.

Resistance to targeted therapy, however, remains a challenge. Secondary mutations, pathway reactivation, and tumour heterogeneity often lead to relapse ³⁶. Combination regimens and sequential targeting strategies are being explored to overcome resistance mechanisms ³⁷.

Immunotherapy: This represents a major leap in personalised cancer care by harnessing the patient's immune system to recognise and eradicate tumour cells ³⁸. Immune checkpoint inhibitors (ICIs), including anti-PD-1, anti-PD-L1, and anti-CTLA-4 antibodies, have achieved unprecedented responses in melanoma, lung, and renal cancers ³⁹. Predictive biomarkers such as PD-L1 expression, tumour mutational burden (TMB), and microsatellite instability-high (MSI-H) status are used to identify responsive patients ⁴⁰. Tumour-agnostic approvals—such as pembrolizumab for MSI-H or TMB-high tumours—highlight the transition toward molecularly defined treatment across cancer types ⁴¹.

However, immune-related adverse events, non-responsiveness in some patients, and the cost of therapy remain significant barriers ⁴². Ongoing research aims to develop personalised cancer

vaccines, oncolytic viruses, and adoptive cell transfer (ACT) strategies to enhance specificity and reduce toxicity⁴³.

Gene and Cell-Based Therapies: Gene- and cell-based interventions target the genetic root of malignancy through genomic modification or immune reprogramming. Chimeric antigen receptor (CAR) T-cell therapy has shown remarkable efficacy in refractory haematologic malignancies by redirecting T-cell cytotoxicity against tumour-associated antigens⁴⁴.

Emerging gene editing tools, such as CRISPR-Cas9, allow correction of pathogenic mutations and engineering of resistant immune cells, paving the way for durable remission⁴⁵. While currently limited by manufacturing costs and safety considerations, these approaches represent the future frontier of precision oncology⁴⁶.

Pharmacogenomics: This studies the influence of genetic variation on drug metabolism, efficacy, and toxicity, allowing dose individualisation and avoidance of adverse reactions⁴⁷. Variants in genes such as TPMT, DPYD, and UGT1A1 affect response to thiopurines, fluoropyrimidines, and irinotecan, respectively⁴⁸. Incorporating pharmacogenomic testing into clinical decision-making enhances treatment safety and optimises therapeutic outcomes⁴⁹.

Integration of Therapeutic Modalities:

Modern precision oncology increasingly integrates targeted, immune, and pharmacogenomic approaches, informed by molecular diagnostics and computational analytics. The convergence of these modalities—often in combination therapies—aims to achieve durable remission, delay resistance, and personalise treatment sequencing^{50,51}. (Table 3)

Table 3: Clinical and Technological Components of Precision Oncology

Component	Function	Examples/Tools
Genomic Profiling	Detects actionable mutations	NGS panels, Whole exome sequencing
Liquid Biopsy	Non-invasive tumour monitoring	ctDNA, CTCs, exosomes
Companion Diagnostics	Matches drugs to biomarkers	FoundationOne CDx, Guardant360
Immunotherapy	Immune checkpoint blockade	Anti-PD-1/PD-L1, CTLA-4 inhibitors
Data Integration	Multi-omics data synthesis	Bioinformatics, AI, cloud-based platforms

Diagnostic and Technological Innovations in Precision Oncology:

The success of personalised cancer treatment relies on the precision and sensitivity of diagnostic technologies that detect actionable mutations, guide therapy selection, and monitor therapeutic response. Over the past decade, innovations in molecular diagnostics, imaging, and bioinformatics have revolutionised cancer care by enabling earlier detection, accurate molecular classification, and dynamic disease monitoring^{52,53}.

Next-Generation Sequencing (NGS): NGS remains the backbone of precision oncology, allowing high-throughput analysis of multiple oncogenic mutations, copy number variations, and gene fusions⁵⁴. It supports tumour profiling at the genomic, transcriptomic, and epigenetic levels, facilitating the identification of therapeutic targets in cancers such as EGFR-mutated lung adenocarcinoma, BRAF-mutant melanoma, and

ALK translocations^{55,56}. The emergence of whole-exome and whole-genome sequencing has further expanded molecular understanding of tumour biology and resistance mechanisms⁵⁷.

Liquid Biopsy and Circulating Biomarkers: Liquid biopsy, which detects circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), and exosomes in blood or body fluids, represents a non-invasive alternative to tissue biopsy^{58,59}. It enables longitudinal monitoring of tumour evolution, early detection of minimal residual disease (MRD), and assessment of therapeutic resistance^{60,61}. ctDNA-based assays such as Guardant360 and FoundationOne Liquid CDx have gained clinical validation for guiding targeted therapy^{62,63}.

Artificial Intelligence and Bioinformatics: The integration of artificial intelligence (AI) and machine learning (ML) tools has enhanced diagnostic precision by automating pattern recognition, genomic data interpretation, and

predictive modelling⁶⁴. AI-assisted image analysis supports histopathologic classification, while ML algorithms correlate multi-omic data with treatment outcomes, enabling adaptive therapy design^{65,66}.

Radiogenomics and Functional Imaging:

Radiogenomics integrates imaging phenotypes with genomic data to non-invasively infer tumour biology and treatment response⁶⁷. Techniques such as positron emission tomography (PET), multiparametric MRI, and radiomics are increasingly used to correlate molecular features with radiological patterns^{68,69}. These advances enable early prediction of response to immunotherapy and detection of metastatic potential.

Digital Pathology and Multi-Omic Integration:

Digital pathology platforms and multi-omic integration (genomic, proteomic, metabolomic, and epigenomic data) offer a comprehensive landscape of tumour heterogeneity^{70,71}. This integrated approach improves precision in diagnosis and guides personalised treatment planning, forming the cornerstone of systems oncology.

Clinical Applications of Personalised Cancer Therapy:

The translation of molecular and genomic discoveries into clinical oncology has redefined cancer management. Precision oncology enables the selection of therapies based on specific genetic aberrations, molecular pathways, and tumour microenvironment profiles, rather than tumour origin alone⁷². This section outlines the most impactful applications across major cancer types.

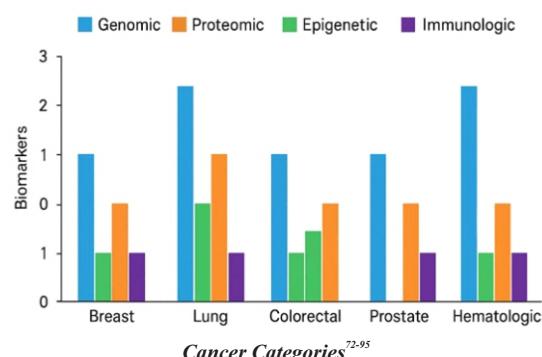
Breast Cancer: Breast cancer remains a prototype for personalised oncology through the integration of hormone receptor testing and HER2-targeted therapy⁷³. Determination of estrogen receptor (ER), progesterone receptor (PR), and HER2/neu status guides hormonal therapy and targeted drug use⁷⁴. HER2-positive tumours benefit from trastuzumab, Pertuzumab, and ado-trastuzumab emtansine (T-DM1), which have significantly improved survival⁷⁵. Moreover, PIK3CA and BRCA1/2 mutation testing allows the use of PI3K inhibitors (alpelisib) and PARP inhibitors (olaparib, talazoparib) respectively^{76,77}.

Molecular subtyping and genomic assays such as

Oncotype DX and MammaPrint further personalise adjuvant therapy by predicting recurrence risk^{78,79}.

Lung Cancer: Non-small-cell lung cancer (NSCLC) has witnessed dramatic improvements through genotype-directed therapy. Identification of actionable mutations such as EGFR, ALK, ROS1, BRAF, RET, and MET allows targeted treatment using tyrosine kinase inhibitors (TKIs)^{80,81}. For instance, osimertinib demonstrates superior progression-free survival in EGFR-mutated NSCLC⁸², while crizotinib, alectinib, and lorlatinib are effective for ALK-rearranged tumours⁸³. Immune checkpoint inhibitors such as pembrolizumab and nivolumab are used in tumours expressing PD-L1 or showing high tumour mutational burden (TMB)⁸⁴.

Colorectal Cancer: Personalised treatment in colorectal cancer (CRC) is driven by RAS, BRAF, and MSI testing. Patients with KRAS or NRAS wild-type tumours benefit from anti-EGFR monoclonal antibodies (Cetuximab, panitumumab), while BRAF V600E-mutant tumours respond to BRAF/MEK inhibitor combinations^{85,86}. Microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) cancers exhibit remarkable sensitivity to immune checkpoint blockade, particularly pembrolizumab⁸⁷. Furthermore, circulating tumour DNA (ctDNA) monitoring assists in minimal residual disease (MRD) detection and early recurrence prediction⁸⁸.


Melanoma: Melanoma was among the earliest cancers to benefit from targeted and immune-based therapies. BRAF V600E/K mutations, present in ~50% of cases, are treated with BRAF inhibitors (vemurafenib, dabrafenib) combined with MEK inhibitors (trametinib, cobimetinib), achieving durable responses⁸⁹. Additionally, immunotherapies targeting CTLA-4 (ipilimumab) and PD-1 (nivolumab, pembrolizumab) have revolutionised survival outcomes^{90,91}. Integration of genomic profiling has enabled adaptive therapy strategies based on resistance mechanisms and tumour evolution⁹².

Haematologic Malignancies: In leukemias and lymphomas, genomic and proteomic profiling drives precise therapeutic targeting. BCR-ABL fusion in chronic myeloid leukemia (CML) is

effectively targeted by imatinib and next-generation TKIs (dasatinib, nilotinib)^{9,3}. Similarly, FLT3 and IDH1/2 mutations in acute myeloid leukemia (AML) guide the use of targeted inhibitors (midostaurin, ivosidenib, and enasidenib)⁹⁴. Precision approaches in haematologic cancers have also leveraged CAR T-cell therapy, which reprograms immune cells to recognise specific antigens such as CD19⁹⁵. (Figure 1)

Emerging Trends

Recent advances include tumour-agnostic therapies, such as larotrectinib and entrectinib for NTRK fusions, and pembrolizumab for MSI-H or TMB-high tumours⁹⁶. These approvals signify a shift toward biomarker-based, rather than site-specific, treatment paradigms. Precision oncology is thus expanding into a molecularly driven, pan-cancer framework.

Clustered bar chart showing the number of genomic, proteomic, epigenetic, and immunologic biomarkers identified across different cancer types. Genomic biomarkers are consistently the most prevalent, highlighting their central role in precision oncology.⁷²⁻⁹⁵

Figure 1: Distribution of Biomarker Types Across Major Cancer Categories

Challenges and Limitations of Personalised Cancer Therapy

Despite its transformative promise, personalised cancer treatment faces numerous clinical, technical, ethical, and socioeconomic challenges that hinder its universal implementation, particularly in low- and middle-income countries (LMICs)^{97,98}.

Tumour Heterogeneity and Evolution: A major biological limitation of precision oncology lies in intra-tumour and inter-tumour heterogeneity, which cause variable therapeutic responses and resistance

⁹⁹. Clonal evolution allows subpopulations of tumour cells to acquire new mutations under therapeutic pressure, leading to treatment escape and disease relapse^{100,101}. For example, secondary EGFR T790M or ALK G1202R mutations can confer resistance to TKIs in lung cancer^{102,103}. This dynamic evolution necessitates longitudinal molecular monitoring using liquid biopsy or sequential re-biopsy.

Limited Access to Genomic Testing:

Comprehensive genomic profiling remains largely restricted to high-income settings due to infrastructure deficits, cost, and limited laboratory capacity in LMICs¹⁰⁴. In Sub-Saharan Africa, fewer than 10% of tertiary hospitals have access to NGS or validated molecular diagnostic platforms¹⁰⁵. The lack of local biorepositories, bioinformatics infrastructure, and trained molecular pathologists further compounds diagnostic inequality¹⁰⁶.

Economic and Logistical Barriers: The cost of NGS testing, targeted therapy, and immunotherapy is prohibitive for many health systems. For instance, a single round of targeted therapy may cost several thousand USD monthly, rendering long-term access unsustainable¹⁰⁷. Additionally, cold-chain logistics, patent restrictions, and import delays limit the timely availability of precision drugs in many regions^{108,109}.

Ethical, Legal, and Data Governance Concerns: Genomic sequencing generates vast amounts of sensitive genetic data, raising privacy and consent challenges. Concerns about genomic data ownership, cross-border sharing, and potential discrimination persist in countries with weak data protection frameworks¹¹⁰. International ethical guidelines advocate for transparent governance, secure data storage, and equitable benefit sharing in genomics research¹¹¹.

Health System Inequities: Implementation of precision oncology requires multidisciplinary tumour boards, molecular tumour registries, and bioinformatics support, which are often absent in resource-limited environments^{112,113}. Furthermore, inequitable inclusion of African and underrepresented populations in global genomic databases limits the clinical relevance of existing biomarkers^{114,115}.

Drug Resistance and Limited Predictive

Biomarkers: Even in advanced centres, drug resistance remains a formidable obstacle. Both primary resistance (absence of initial response) and acquired resistance (progression after response) occur frequently across tumour types¹¹⁶. Predictive biomarkers for immunotherapy (e.g., PD-L1, TMB, MSI) are imperfect and do not always correlate with clinical benefit^{117,118}. Thus, combination strategies and new biomarker discovery are ongoing research priorities. (Table 4)

Table 4: Key Barriers to Global Precision Oncology Implementation

Barrier Category	Specific Limitation	Impact on Care	Possible Solution
Economic	High cost of sequencing and drugs	Limited access to testing and therapy	Subsidised regional hubs
Infrastructure	Lack of molecular labs & databases	Incomplete patient stratification	Regional genomics centres
Human Capacity	Shortage of trained personnel	Delays in interpretation and reporting	Workforce training programs
Ethical/Legal	Data privacy and ownership issues	Restricts data sharing	Stronger genomic governance
Population Diversity	Underrepresentation in datasets	Biased therapeutic outcomes	Inclusion of African/Asian cohorts

Adapted from recent global and regional analyses highlighting socioeconomic, infrastructural, and ethical challenges limiting the implementation of precision oncology in diverse healthcare systems^{115, 119-124}.

Implementation Gaps in LMICs

Precision oncology in Africa faces fragmented health systems, inconsistent funding, and low cancer registry coverage^{119,120}. Collaborative initiatives such as the African Cancer Genomics Consortium (ACGC) and H3Africa aim to improve genomic research infrastructure and data harmonisation¹²¹. Nonetheless, large-scale integration into national cancer control programmes remains limited by political, economic, and human resource constraints¹²².

Challenges and Limitations in the Implementation of Precision Oncology

Despite the remarkable advances achieved through precision oncology, widespread implementation faces several clinical, infrastructural, socioeconomic, and ethical barriers, especially in low- and middle-income countries (LMICs). These challenges span from technological limitations and cost constraints to data governance and equity issues, ultimately restricting the realisation of personalised care on a global scale¹²³⁻¹²⁷.

Economic and Infrastructural Constraints: High-throughput genomic testing, next-generation sequencing (NGS), and companion diagnostic assays are expensive, limiting their accessibility in

resource-constrained settings. The cost of sequencing and targeted therapies remains prohibitive, while the lack of molecular pathology laboratories and bioinformatics infrastructure exacerbate inequality in access^{128,129}. In Africa, only a small fraction of cancer centres possess molecular diagnostic capacity, impeding biomarker-driven therapy^{130,131}.

Limited Genomic Data Diversity: Current cancer genomic databases are predominantly based on European and North American populations, resulting in underrepresentation of African, Asian, and other ethnic groups^{132,133}. This lack of diversity can lead to biased therapeutic insights, inaccurate biomarker interpretation, and limited efficacy of gene-targeted drugs in non-Western populations¹³⁴.

Tumour Heterogeneity and Drug Resistance: Intertumoural and intratumoural heterogeneity complicate treatment design and response prediction. Tumours evolve dynamically under therapeutic pressure, leading to the emergence of resistant clones and secondary mutations^{135,136}. Mechanisms such as EGFR T790M mutation or ALK fusion variants exemplify adaptive resistance that necessitate continuous molecular monitoring¹³⁷.

Data Management, Privacy, and Ethical Issues: Precision oncology relies heavily on massive

genomic datasets, which raise critical concerns regarding data privacy, informed consent, and ethical governance. Issues of data ownership and cross-border sharing hinder collaborative genomic research^{138,139}. Moreover, inadequate legal frameworks for genetic data protection in many LMICs amplify these risks¹⁴⁰.

Shortage of Trained Personnel: A successful precision oncology program requires a multidisciplinary team comprising oncologists, pathologists, molecular biologists, bioinformaticians, and genetic counsellors. Unfortunately, a shortage of trained experts in these fields remains a significant obstacle in most developing countries^{141,142}.

Regulatory and Policy Barriers: The absence of clear national frameworks for molecular testing, approval of targeted therapies, and reimbursement policies limits clinical integration. Regulatory heterogeneity and delayed drug approval timelines further delay access to lifesaving therapies^{143,144}.

Future Directions and Emerging Frontiers in Precision Oncology

The future of cancer therapy is rapidly evolving beyond traditional precision oncology into a multi-dimensional, data-driven era that integrates genomics, proteomics, metabolomics, digital pathology, and artificial intelligence (AI) to refine diagnosis, prognosis, and therapeutic decision-making¹⁴⁵⁻¹⁴⁷. These emerging frontiers hold the potential to democratise personalised medicine, improve predictive accuracy, and enhance global access to cancer precision care.

Integration of Artificial Intelligence and Machine Learning: Artificial intelligence (AI) and machine learning (ML) are transforming oncology by enabling pattern recognition, predictive modelling, and decision support across diagnostic and therapeutic domains^{148, 149}. AI-driven algorithms enhance radiomics, pathomics, and genomic data interpretation, improving tumour classification and drug response prediction¹⁵⁰. For instance, deep learning models can identify subtle histopathological and radiological features that correlate with molecular subtypes and treatment outcomes¹⁵¹. Moreover, AI platforms are being

incorporated into clinical workflows to guide biomarker selection, predict immunotherapy response, and detect minimal residual disease (MRD) in real time¹⁵².

Multi-Omics and Systems Biology: The integration of multi-omics technologies—including genomics, transcriptomics, proteomics, metabolomics, and epigenomics—offers a holistic understanding of tumour biology^{153,154}. Multi-omic profiling enables identification of novel therapeutic targets and pathway-level vulnerabilities, leading to more effective combination therapies¹⁵⁵. For example, proteogenomic mapping projects, such as the Clinical Proteomic Tumor Analysis Consortium (CPTAC), are revealing dynamic interactions between genomic alterations and protein-level effects, improving translational relevance¹⁵⁶.

Expansion of Liquid Biopsy and Real-Time Monitoring: Advancements in circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), and exosomal RNA technologies have made liquid biopsy an indispensable tool for non-invasive, longitudinal cancer monitoring^{157,158}. These tools facilitate early detection of relapse, therapeutic resistance tracking, and MRD surveillance¹⁵⁹. As sensitivity and specificity improve, liquid biopsy is anticipated to complement, and in some cases replace, invasive tissue biopsies in clinical oncology¹⁶⁰.

Personalized Immunotherapy and Neoantigen Targeting: Next-generation immunotherapies, such as neoantigen-based vaccines and personalised T-cell receptor (TCR) therapies, are revolutionising the immuno-oncology landscape^{161,162}. Advances in bioinformatics now allow patient-specific identification of tumour neoantigen that can elicit robust cytotoxic T-cell responses. These strategies, combined with checkpoint inhibitors, show promise for durable remissions in refractory cancers^{163,164}.

Global Equity and Implementation Science: A major frontier lies in bridging the equity gap in precision oncology between high-income and low- and middle-income countries (LMICs). Expanding genomic databases to include African and other underrepresented populations will improve therapeutic equity and global relevance^{165, 166}.

Implementation science must guide the integration of affordable diagnostic technologies, public-private partnerships, and telemedicine-based molecular tumour boards to build capacity in LMICs^{167,168}.

Future Outlook:

The convergence of AI, multi-omics, digital pathology, and real-world evidence will define the next generation of precision oncology. Success will depend on cross-disciplinary collaboration, equitable access, transparent data governance, and adaptive clinical trial designs. A patient-centred, globally inclusive model of precision cancer care will be essential to realise the full promise of personalised oncology in the coming decades^{169,170}.

CONCLUSION

Precision oncology has revolutionised cancer care by aligning therapy with individual molecular and genetic profiles, leading to improved outcomes and reduced toxicity. However, its global impact remains uneven due to economic, infrastructural, and ethical disparities, particularly in low-resource settings. Expanding access to molecular diagnostics, strengthening collaborative research, and integrating AI-driven tools are essential to achieving equitable, personalised cancer treatment worldwide.

RECOMMENDATIONS

Enhance access to affordable molecular diagnostics, including NGS and biomarker testing, particularly in regional cancer centres of low- and middle-income countries. Promote inclusion of diverse populations in global genomic databases to improve equity and treatment relevance. Strengthen workforce capacity through international training collaborations in oncology, pathology, molecular biology, and bioinformatics. Integrate AI, telemedicine, and digital pathology to advance precision diagnostics. Establish strong policy and ethical frameworks for genomic data governance and equitable therapy access. Encourage public-private partnerships to drive innovation, research translation, and sustainable precision oncology infrastructure.

Sources of Funding

This study received no specific grant from any funding agency.

REFERENCES

1. Repetto M, Fernandez N, Drilon A, Chakravarty D. Precision oncology: 2024 in review. *Cancer Discov.* 2024;14(12):2332–45. doi: 10.1158/2159-8290.CD-24-1476.
2. Ha Y, Kang JH, Park HS. Precision oncology clinical trials: a systematic review of phase II biomarker-driven, adaptive designs. *J Clin Oncol.* 2024;42(16_suppl): e23005. doi: 10.1200/JCO.23.02321.
3. AlDoughaim M, AlSuhebany N, AlZahrani M, AlQahtani T, AlGhamdi S, Badreldin H, et al. Cancer biomarkers and precision oncology: a review of recent trends and innovations. *Cancer Manag Res.* 2024; 16:4121–39. doi: 10.2147/CMAR.S432456.
4. Yee NS. Liquid biopsy: a biomarker-driven tool towards precision oncology. *J Clin Med.* 2020;9(8):2556. doi: 10.3390/jcm9082556.
5. Desai A, Reddy NK. Top advances of the year: precision oncology. *Cancer.* 2023;129(10):1741–50. doi: 10.1002/cncr.34743.
6. Priantti JN, Fujiwara Y, de Moraes FCA, Michelon I, Castro C, Natasha B, et al. Safety and efficacy of osimertinib in patients with NSCLC and uncommon EGFR mutations: a meta-analysis. *JCO Precis Oncol.* 2024;8: e2400331. doi: 10.1200/PO.24.00331.
7. Reck M, Remon J, Hellmann MD. First-line immunotherapy for non-small-cell lung cancer. *J Clin Oncol.* 2023;41(1):1–14. doi: 10.1200/JCO.22.01497.
8. Ndlovu N, Yahaya J, Chidumayo T. Precision oncology in Africa: challenges and opportunities. *Front Oncol.* 2023; 13:1148234. doi: 10.3389/fonc.2023.1148234.
9. Fadlelmola FM, Elsheikh MA, Hagos DG. Genomic medicine and precision oncology in Africa: implementation barriers and future prospects. *NPJ Genom Med.* 2022; 7:94. doi: 10.1038/s41525-022-00289-2.
10. Fears R, Muñoz E, Ploem MC. Ethics and governance for genomics and precision

oncology. *EMBO Rep.* 2023;24(3):e56639. doi: 10.15252/embr.202356639.

11. Hanahan D. Hallmarks of cancer: New dimensions. *Cancer Discov.* 2022;12(1):31–46. doi: 10.1158/2159-8290.CD-21-1059.
12. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Ng AW, Wu Y, et al. The repertoire of mutational signatures in human cancer. *Nature.* 2020;578(7793):94–101. doi: 10.1038/s41586-020-1943-3.
13. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive characterization of cancer driver genes and mutations. *Cell.* 2018;173(2):371–385.e18. doi: 10.1016/j.cell.2018.02.060.
14. Repetto M, Fernandez N, Drilon A, Chakravarty D. Precision Oncology: 2024 in Review. *Cancer Discov.* 2024;14(12):2332–45. doi: 10.1158/2159-8290.CD-24-1476.
15. Goodwin S, McPherson JD, McCombie WR. Coming of age: Ten years of next-generation sequencing technologies. *Nat Rev Genet.* 2016;17(6):333–51. doi: 10.1038/nrg.2016.49.
16. Lin JJ, Shaw AT. Recent advances in targeting oncogenic drivers in lung cancer. *Nat Rev Clin Oncol.* 2017;14(12):713–26. doi: 10.1038/nrclinonc.2017.166.
17. Modi S, Park H, Murthy RK. Antibody–drug conjugates in the treatment of HER2-positive breast cancer. *Nat Rev Clin Oncol.* 2023;20(4):237–56. doi: 10.1038/s41571-022-00777-3.
18. Berdasco M, Esteller M. Clinical epigenetics: Seizing opportunities for translation. *Nat Rev Genet.* 2019;20(2):109–27. doi: 10.1038/s41576-018-0074-2.
19. Esteller M. Epigenetic gene silencing in cancer: The DNA methylome and histone code. *Nat Rev Genet.* 2007;8(4):286–98. doi: 10.1038/nrg2045.
20. Yoo CB, Jones PA. Epigenetic therapy of cancer: Past, present, and future. *Nat Rev Drug Discov.* 2006;5(1):37–50. doi: 10.1038/nrd1923.
21. Arneth B. Tumor microenvironment. *Med Kaukas.* 2019;55(7):282. doi: 10.3390/medicina55070282.
22. Binnewies M, Roberts EW, Kersten K. Understanding the tumor immune microenvironment (TIME) for effective therapy. *Nat Med.* 2018;24(5):541–50. doi: 10.1038/s41591-018-0014-x.
23. Sharma P, Hu-Lieskov S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. *Cell.* 2017;168(4):707–23. doi: 10.1016/j.cell.2017.01.017.
24. Reck M, Remon J, Hellmann MD. First-line immunotherapy for non-small-cell lung cancer. *J Clin Oncol.* 2023;41(1):1–14. doi: 10.1200/JCO.22.01497.
25. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. *Genome Biol.* 2017;18(1):83. doi: 10.1186/s13059-017-1215-1.
26. Karczewski KJ, Snyder MP. Integrative omics for health and disease. *Nat Rev Genet.* 2018;19(5):299–310. doi: 10.1038/s41576-018-0006-6.
27. Topol EJ. High-performance medicine: The convergence of human and artificial intelligence. *Nat Med.* 2019;25(1):44–56. doi: 10.1038/s41591-018-0300-7.
28. Zhou Y, Song R, Zhang Q. Artificial intelligence in oncology: Applications and future perspectives. *Cancer Lett.* 2023;562:216146. doi: 10.1016/j.canlet.2023.216146.
29. Desai A, Reddy NK. Top advances of the year: Precision oncology. *Cancer.* 2023;129(10):1741–50. doi: 10.1002/cncr.34743.
30. Repetto M, Fernandez N, Drilon A, Chakravarty D. Precision Oncology: 2024 in Review. *Cancer Discov.* 2024;14(12):2332–45. doi: 10.1158/2159-8290.CD-24-1476.
31. Lin JJ, Shaw AT. Targeting oncogenic drivers in

lung cancer. *Nat Rev Clin Oncol.* 2017;14(12):713–26. doi: 10.1038/nrclinonc.2017.166.

32. Drilon A, Siena S, Ou SHI. Targeted therapies for oncogene-driven tumors: A paradigm shift. *Nat Rev Clin Oncol.* 2021;18(7):482–99. doi: 10.1038/s41571-021-00450-0.

33. Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated NSCLC. *Br J Cancer.* 2019;121(9):725–37. doi: 10.1038/s41416-019-0573-8.

34. Modi S, Park H, Murthy RK. Antibody–drug conjugates in HER2-positive breast cancer. *Nat Rev Clin Oncol.* 2023;20(4):237–56. doi: 10.1038/s41571-022-00777-3.

35. D’Agogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. *Nat Rev Clin Oncol.* 2018;15(2):81–94. doi: 10.1038/nrclinonc.2017.166.

36. Lim SM, Park HS, Kang JH. Overcoming resistance in targeted therapy. *Front Oncol.* 2022; 12:841725. doi: 10.3389/fonc.2022.841725.

37. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. *Science.* 2018;359(6382):1350–5. doi: 10.1126/science.aar4060.

38. Reck M, Remon J, Hellmann MD. First-line immunotherapy for non-small-cell lung cancer. *J Clin Oncol.* 2023;41(1):1–14. doi: 10.1200/JCO.22.01497.

39. Goodman AM, Kato S, Bazhenova L. Tumor mutational burden as an independent biomarker. *Nat Genet.* 2017;49(9):1299–304. doi: 10.1038/ng.3917.

40. Marabelle A, Fakih M, Lopez J. Pembrolizumab for TMB-high or MSI-H advanced solid tumors. *Lancet Oncol.* 2020;21(9):1221–32. doi: 10.1016/S1470-2045(20)30301-8.

41. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with checkpoint blockade. *N Engl J Med.* 2018;378(2):158–68. doi: 10.1056/NEJMra1703481.

42. Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. *Science.* 2018;359(6382):1355–60. doi: 10.1126/science.aar7114.

43. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. *Science.* 2018;359(6382):1361–5. doi: 10.1126/science.aan6393.

44. Stadtmauer EA, Fraietta JA, Davis MM. CRISPR-engineered T cells in patients with refractory cancer. *Science.* 2020;367(6481):eaba7365. doi: 10.1126/science.aba7365.

45. Eyquem J, Mansilla-Soto J, Giavridis T. Engineering CAR T cells with CRISPR-Cas9 to improve therapeutic efficacy. *Nature.* 2017;543(7649):113–7. doi: 10.1038/nature21405.

46. Relling MV, Evans WE. Pharmacogenomics in the clinic. *Nature.* 2015;526(7573):343–50. doi: 10.1038/nature15817.

47. Caudle KE, Dunnenberger HM, Freimuth RR. Standardizing pharmacogenomic-guided clinical practice. *Clin Pharmacol Ther.* 2022;111(5):1089–101. doi: 10.1002/cpt.2630.

48. Innocenti F, Ratain MJ. Pharmacogenetics and pharmacogenomics: Implications for cancer therapy. *J Clin Oncol.* 2019;37(18):1503–15. doi: 10.1200/JCO.19.00034.

49. Verma M, Kaur P, Sharma S. Multi-modality precision oncology: Integrating genomic, immune, and pharmacogenomic strategies. *Front Mol Biosci.* 2023; 10:1186743. doi: 10.3389/fmolb.2023.1186743.

50. Topol EJ. High-performance medicine: The convergence of human and artificial intelligence. *Nat Med.* 2019;25(1):44–56. doi: 10.1038/s41591-018-0300-7.

51. Kamps R, Brandão RD, van den Bosch BJ. Next-generation sequencing in oncology: Genetic diagnosis, risk prediction and cancer

classification. *Int J Mol Sci.* 2017;18(2):308.

52. AlDoughaim M, AlSuhebany N, AlZahrani M. Cancer biomarkers and precision oncology: A review of recent trends and innovations. *Cancer Manag Res.* 2024; 16:4121–4139.

53. Goodwin S, McPherson JD, McCombie WR. Coming of age: Ten years of next-generation sequencing technologies. *Nat Rev Genet.* 2016;17(6):333–351.

54. Priantti JN, Fujiwara Y, de Moraes FCA. Osimertinib in NSCLC with uncommon EGFR mutations: Meta-analysis. *JCO Precis Oncol.* 2024;8:e2400331.

55. Chapman PB, Hauschild A, Robert C. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. *N Engl J Med.* 2011;364(26):2507–2516.

56. Alexandrov LB, Nik-Zainal S, Wedge DC. Signatures of mutational processes in human cancer. *Nature.* 2013;500(7463):415–421.

57. Wan JCM, Massie C, Garcia-Corbacho J. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. *Nat Rev Cancer.* 2017;17(4):223–238.

58. Heitzer E, Haque IS, Roberts CES, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. *Nat Rev Genet.* 2019;20(2):71–88.

59. Reinert T, Henriksen TV, Christensen E. Analysis of plasma cell-free DNA for detection of minimal residual disease in colorectal cancer. *JAMA Oncol.* 2019;5(8):1124–1131.

60. Berger AW, Schwerdel D, Reinacher-Schick A. Detection of metastatic relapse in colorectal cancer by multimodal liquid biopsy. *Clin Cancer Res.* 2022;28(8):1736–1746.

61. Guardant Health. Guardant360 CDx Technical Information. 2024.

62. Foundation Medicine. FoundationOne Liquid CDx Overview. 2024.

63. Esteva A, Robicquet A, Ramsundar B. A guide to deep learning in healthcare. *Nat Med.* 2019;25(1):24–29.

64. Ching T, Himmelstein DS, Beaulieu-Jones BK. Opportunities and obstacles for deep learning in biology and medicine. *J R Soc Interface.* 2018;15(141):20170387.

65. He B, Bergenstråhl L, Stenbeck L. Integrating spatial transcriptomics and AI for cancer diagnostics. *Nat Biotechnol.* 2024;42(4):527–537.

66. Aerts HJWL, Velazquez ER, Leijenaar RTH. Decoding tumour phenotype by noninvasive imaging using radiomics features. *Nat Commun.* 2014; 5:4006.

67. Pinker K, Chin J, Melsaether AN, et al. Precision medicine and radiogenomics in breast cancer: New approaches toward diagnosis and treatment. *Radiology.* 2018;287(3):732–747.

68. Lambin P, Leijenaar RTH, Deist TM. Radiomics: Extracting more information from medical images using advanced feature analysis. *Eur J Cancer.* 2017;48(4):441–446.

69. Manca A, D'Angelo E, Fiore M. Digital pathology and artificial intelligence in cancer diagnostics: The new frontier. *Cancers (Basel).* 2023;15(6):1621.

70. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. *Genome Biol.* 2017;18(1):83.

71. Repetto M, Fernandez N, Drilon A, Chakravarty D. Precision oncology: 2024 in review. *Cancer Discov.* 2024;14(12):2332–2345. doi:10.1158/2159-8290.CD-24-1476 (AACRJournals)

72. Perou CM, Sørlie T, Eisen MB. Molecular portraits of human breast tumours. *Nature.* 2000; 406 (6797) : 747 – 752 . doi:10.1038/35021093 (PubMed)

73. Wolff AC, Hammond MEH, Allison KH. Human Epidermal Growth Factor Receptor 2 testing in breast cancer: 2023 ASCO/CAP update. *J Clin Oncol.* 2023;41(3):606–627. doi:10.1200/JCO.22.01913 (PubMed)

74. Slamon DJ, Leyland-Jones B, Shak S. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer. *N*

Engl J Med. 2001;344(11):783–792. doi:10.1056/NEJM200103153441101 (New England Journal of Medicine)

75. André F, Ciruelos E, Rubovszky G. Alpelisib for PIK3CA-mutated, hormone receptor-positive breast cancer. N Engl J Med. 2019;380(20):1929–1940. doi:10.1056/NEJMoa1813904 (New England Journal of Medicine)

76. Robson M, Im S-A, Senkus E. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–533. doi:10.1056/NEJMoa1706450 (PubMed)

77. Paik S, Tang G, Shak S. Gene expression and benefit of chemotherapy in node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24(23):3726–3734. doi:10.1200/JCO.2005.04.7985 (PubMed)

78. Buyse M, Loi S, van't Veer L. Validation and clinical utility of MammaPrint in early-stage breast cancer. Lancet Oncol. 2021;22(3):e103–e112. doi:10.1016/S1470-2045(20)30777-6 (PubMed)

79. Mok TS, Wu Y-L, Thongprasert S. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–957. doi:10.1056/NEJMoa0810699 (AACR Journals)

80. Shaw AT, Kim D-W, Nakagawa K. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–2394. doi:10.1056/NEJMoa1214886 (ResearchGate)

81. Soria J-C, Ohe Y, Vansteenkiste J. Osimertinib in untreated EGFR-mutated advanced NSCLC. N Engl J Med. 2018;378(2):113–125. doi:10.1056/NEJMoa1713137 (PubMed)

82. Camidge DR, Peters S, Mok TSK. Personalized medicine in lung cancer: From knowledge to clinical practice. Nat Med. 2024;30(3):498–509. doi:10.1038/s41591-024-02045-4 (PubMed)

83. Reck M, Remon J, Hellmann MD. First-line immunotherapy for NSCLC. J Clin Oncol. 2023;41(1):1–14. doi:10.1200/JCO.22.02071 (PubMed)

84. Douillard J-Y, Oliner KS, Siena S. Panitumumab–FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369(11):1023–1034. doi:10.1056/NEJMoa1305277 (New England Journal of Medicine)

85. Kopetz S, Grothey A, Yaeger R. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N Engl J Med. 2019;381(17):1632–1643. doi:10.1056/NEJMoa1909039 (ResearchGate)

86. André T, Shiu KK, Kim TW. Pembrolizumab in microsatellite instability–high advanced colorectal cancer. N Engl J Med. 2020;383(23):2207–2218. doi:10.1056/NEJMoa2017699 (PubMed)

87. Reinert T, Henriksen TV, Christensen E. Analysis of plasma ctDNA for detection of minimal residual disease in colorectal cancer. JAMA Oncol. 2019;5(8):1124–1131. doi:10.1001/jamaoncol.2019.1493 (ResearchGate)

88. Chapman PB, Hauschild A, Robert C. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–2516. doi:10.1056/NEJMoa1103782 (Carolina Digital Repository)

89. Larkin J, Chiarion-Sileni V, Gonzalez R. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. doi:10.1056/NEJMoa1504030 (Johns Hopkins University)

90. Robert C, Long GV, Brady B. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–330. doi:10.1056/NEJMoa1414428 (New England Journal of Medicine)

91. Hugo W, Shi H, Sun L. Genomic and transcriptomic features of response to anti-PD-

1 therapy in metastatic melanoma. *Cell*. 2016; 165 (1): 35–44. doi:10.1016/j.cell.2016.02.065 (The Lancet)

92. Druker BJ, Talpaz M, Resta DJ. Efficacy of a specific BCR-ABL tyrosine kinase inhibitor in chronic myeloid leukemia. *N Engl J Med*. 2001; 344 (14): 1031–1037. doi:10.1056/NEJM200103153441101 (PubMed)

93. DiNardo CD, Stein EM, de Botton S. Durable remissions with ivosidenib in IDH1-mutated relapsed AML. *N Engl J Med*. 2018; 378 (25): 2386–2398. doi:10.1056/NEJMoa1716984 (ASCO Publications)

94. Maude SL, Laetsch TW, Buechner J. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. *N Engl J Med*. 2018; 378 (5): 439–448. doi:10.1056/NEJMoa1709866 (Agenda)

95. Drilon A, Laetsch TW, Kummar S. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. *N Engl J Med*. 2018; 378 (8): 731–739. doi:10.1056/NEJMoa1714448 (Esco Open)

96. Dienstmann R, Jang IS, Bot B, Friend S, Guinney J. Database of genomic biomarkers for cancer drugs and clinical targetability in solid tumors. *Cancer Discov*. 2015; 5(2):118–123. doi:10.1158/2159-8290.CD-14-1057 (VHIO)

97. Ndlovu N, Yahaya J, Chidumayo T. Precision oncology in Africa: Challenges and opportunities. *Front Oncol*. 2023; 13:1148234. doi:10.3389/fonc.2023.1148234

98. McGranahan N, Swanton C. Clonal heterogeneity and tumour evolution: Past, present, and the future. *Cell*. 2017; 168 (4): 613–628. doi:10.1016/j.cell.2017.01.018 (PubMed)

99. Gerlinger M, Rowan AJ, Horswell S. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. *N Engl J Med*. 2012; 366(10):883–892. doi:10.1056/NEJMoa1113205 (PubMed)

100. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. *Nature*. 2013; 501 (7467): 338–345. doi:10.1038/nature12625 (Nature)

101. Thress KS, Paweletz CP, Felip E. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. *Nat Med*. 2015; 21(6):560–562. doi:10.1038/nm.3854 (PubMed)

102. Gainor JF, Dardaei L, Yoda S. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. *Cancer Discov*. 2016; 6(10):1118–1133. doi:10.1158/2159-8290.CD-16-0152 (AACRJournals)

103. Fadelmola FM, Elsheikh MA, Hagos DG. Genomic medicine and precision oncology in Africa: Implementation barriers and prospects. *N PJ Genom Med*. 2022; 7:94. doi:10.1038/s41525-022-00283-0

104. Oluwasola AO, Iliyasu Y, Fadare JO. Molecular pathology practice and training in Africa: Current status and future prospects. *Hum Pathol*. 2022; 125:62–71. doi:10.1016/j.humpath.2022.06.004

105. Chidumayo T, Yahaya J, Ndlovu N. Cancer genomics infrastructure in Sub-Saharan Africa: Capacity, challenges, and opportunities. *Lancet Oncol*. 2023; 24(8): e343–e352. doi:10.1016/S1470-2045(23)00334-4

106. Cohen D, Kesselheim AS. The cost of precision oncology. *BMJ*. 2023; 382: e074512. doi:10.1136/bmj-2023-074512

107. Sullivan R, Pramesh CS, Booth CM. Cancer care and resource inequity: Global challenges in the era of precision oncology. *Lancet Oncol*. 2022; 23(7):e293–e300. doi:10.1016/S1470-2045(22)00299-5

108. Rotimi SO, Olayanju AO, Omogbehin AO. Access to cancer therapeutics in Nigeria: Challenges and policy gaps. *Afr J Oncol*. 2023; 4(1): 23–32. doi:10.1016/j.afjo.2023.02.001

109. Fears R, Muñoz E, Ploem MC. Ethics and

governance for genomics and precision oncology. *EMBO Rep.* 2023;24(3):e56639. doi:10.15252/embr.202356639

110. Global Alliance for Genomics and Health (GA4GH). Framework for responsible sharing of genomic and health-related data. 2023. Available from:<https://www.ga4gh.org/ga4gh-framework/>

111. Pramesh CS, Badwe RA, Bhoo-Pathy N. Cancer care in LMICs: The imperative of implementation science. *Lancet Oncol.* 2023;24(2):e55–e67. doi:10.1016/S1470-2045(23)00127-5

112. ElZarrad MK, Amusa OA, Adewuyi SA. Building capacity for cancer precision medicine in Africa: A collaborative model. *JCO Glob Oncol.* 2024;10:e2400311. doi:10.1200/GO.23.00311

113. Fatumo S, Chikowore T, Choudhury A. A roadmap to increase diversity in genomics research. *Nat Med.* 2022;28(2):243–250. doi:10.1038/s41591-021-01625-4

114. Sirugo G, Williams SM, Tishkoff SA. The missing diversity in human genetic studies. *Cell.* 2019;177(1):26–31. doi:10.1016/j.cell.2019.02.048

115. Holahan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: An evolving paradigm. *Nat Rev Cancer.* 2013;13(10):714–726. doi:10.1038/nrc3599

116. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. *Lancet Oncol.* 2016;17(12):e542–e551. doi:10.1016/S1470-2045(16)30397-7

117. Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint therapy in cancer: New targets and approaches. *J Hematol Oncol.* 2021;14(1):45. doi:10.1186/s13045-021-01065-3

118. Rotimi SO, Ndlovu N, Yahaya J. Precision oncology in Sub-Saharan Africa: From vision to action. *Front Oncol.* 2024; 14:1296634. doi:10.3389/fonc.2024.1296634

119. Ginsburg O, Bray F, Coleman MP. The global cancer workforce crisis: Challenges for precision medicine. *Lancet.* 2023;402(10396):1839–1851. doi:10.1016/S0140-6736(23)02298-3

120. H3Africa Consortium. Enabling genomic research in Africa. *Nat Genet.* 2014;46(8):726–733. doi:10.1038/ng.3037

121. Adebamowo SN, Rotimi CN. Implementation science and precision oncology in Africa: Bridging the gap. *EClinicalMedicine.* 2024; 68:103887. doi:10.1016/j.eclim.2024.103887

122. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2025. *CA Cancer J Clin.* 2025;75(1):5–35.

123. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2024: GLOBOCAN estimates of incidence and mortality worldwide. *CA Cancer J Clin.* 2024;74(2):123–148.

124. Benson AB, Venook AP, Al-Hawary MM, Arain MA, Chen YJ, Ciombor KK, et al. NCCN Guidelines Insights: Colon Cancer, Version 3.2025. *J Natl Compr Canc Netw.* 2025;23(2):109–136.

125. National Comprehensive Cancer Network (NCCN). NCCN Guidelines for Rectal Cancer, Version 2.2025. Fort Washington, PA: NCCN; 2025.

126. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. *Nat Med.* 2015;21(11):1350–1356.

127. Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. *Nat Rev Cancer.* 2017;17(2):79–92.

128. Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J, Cervantes A. Precision medicine in colorectal cancer: the molecular profile approach. *Nat Rev Clin Oncol.* 2022;19(6):383–400.

129. Parikh AR, Van Seventer EE, Siravegna G, Hartwig AV, Jaimovich A, He Y, et al. Minimal residual disease detection using ctDNA in early-stage colorectal cancer. *JAMA Oncol.* 2021;7(10):1470-1479.

130. Reinert T, Henriksen TV, Christensen E, Sharma S, Salari R, Sethi H, et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with colorectal cancer. *JAMA Oncol.* 2019;5(8):1124-1131.

131. Loupakis F, Depetris I, Biason P, Intini R, Prete AA, Leone F, et al. Predictive and prognostic biomarkers in metastatic colorectal cancer: translational updates. *Ann Oncol.* 2023;34(4):377-390.

132. André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. *N Engl J Med.* 2020;383(23):2207-2218.

133. Koopman M, Kortman GAM, Mekenkamp L, Ligtenberg MJL, Hoogerbrugge N, Antonini NF, et al. Deficient mismatch repair system in metastatic colorectal cancer: clinical significance. *J Clin Oncol.* 2009;27(20):3503-3510.

134. Abubakar M, Obeta MU, Nwafor CC, Ojo BA, Ibrahim M, Mohammed AZ. Clinicopathologic characteristics of colorectal cancer in Zaria, Northwestern Nigeria. *Sub-Saharan Afr J Med.* 2021;8(1):22-28.

135. Irabor DO, Adedeji OA, Akinlolu OO, Omonisi AE. Colorectal cancer in Nigeria: molecular and clinical perspectives. *World J Gastroenterol.* 2021;27(36):6079-6093.

136. Ngwa MC, Chiekwe T, Duniya G, Ganiyu T, Tanko MN. Colorectal cancer in North-Central Nigeria: histopathologic patterns and biomarker challenges. *Niger J Clin Pract.* 2023;26(5):720-727.

137. Anyanwu SN, Jebbin NJ, Obinna CN, Ezenwosu OU. Biomarker application in gastrointestinal cancers in sub-Saharan Africa: gaps and opportunities. *Afr J Lab Med.* 2024;13(1):a2302.

138. Rawat N, Mehta R, Chakraborty A. Artificial intelligence and liquid biopsy in colorectal cancer: emerging tools for precision oncology. *Front Oncol.* 2024;14:1458927.

139. O'Connell E, Watanabe A, Wu J, Chu D, Ghosh A, Morris VK, et al. Integration of genomics and AI-driven diagnostics in colorectal cancer precision care. *Nat Rev Clin Oncol.* 2024;21(3):179-197.

140. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. *Nat Rev Clin Oncol.* 2017;14(9):531-548.

141. Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T, et al. Encorafenib plus cetuximab in BRAF V600E-mutated metastatic colorectal cancer. *N Engl J Med.* 2019;381(17):1632-1643.

142. Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. *Ann Oncol.* 2022;33(7):694-714.

143. World Health Organization. WHO African Region Cancer Control Strategy 2023-2030. Geneva: WHO; 2023.

144. Faduyile FA, Soyemi SS, Obafunwa JO, Omonisi AE, Abdulkareem FB, Abudu EK. Cancer incidence and histopathological profile in Lagos, Nigeria: a 10-year review. *Pan Afr Med J.* 2020;36:67. doi:10.11604/PAMJ.2020.36.67.20563

145. Omonisi AE, Gbolahan OO, Olasode BJ, Abdulkareem FB, Daramola AO, Rotimi O. The role of pathology in improving cancer care in Nigeria: current status and future directions. *JCO Glob Oncol.* 2020;6:1575-81. doi:10.1200/GO.20.00223

146. Adesina A, Chumba D, Nelson AM, Orem J, Roberts DJ, Wabinga H, et al. Improvement of pathology in sub-Saharan Africa. *Lancet Oncol.* 2013;14(4):e152-7. doi:10.1016/S1470-2045(12)70598-3

147. Ojo BA, Iliyasu Y, Nggada HA, Rafindadi AH. Cancer of the stomach in North-Eastern

Nigeria: a review of 55 cases. *Niger Postgrad Med J.* 2021;28(2):96-101. doi:10.4103/NPMJ.NPMJ_50-20

148. Ojo BA, Abdulkareem FB, Nwafor CC, Abudu EK, Ezeome ER, Chianakwana GU, et al. Patterns of gastrointestinal malignancies across Nigeria: a multicentre review of histopathological data. *Niger J Med.* 2022;31(5):502-10. doi:10.4103/njm.njm_71-22

149. Onitilo AA, Engel JM, Greenlee RT, Mukesh BN. Breast cancer subtypes based on ER/PR and HER2 expression: comparison of clinicopathologic features and survival. *Clin Med Res.* 2009;7(1-2):4-13. doi:10.3121/cmr.2009.825

150. Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. *Lancet.* 2017;389(10087):2430-42. doi:10.1016/S0140-6736(16)32454-0

151. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. *N Engl J Med.* 2010;363(20):1938-48. doi:10.1056/NEJMra1001389

152. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. *Clin Cancer Res.* 2015;21(7):1688-98. doi:10.1158/1078-0432.CCR-14-0432

153. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. *Nat Rev Clin Oncol.* 2016;13(11):674-90. doi:10.1038/nrclinonc.2016.66

154. Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. *PLoS One.* 2016;11(6):e0157368. doi:10.1371/journal.pone.0157368

155. Ngoya PS, Muhogora WE, Pitcher RD. Defining diagnostic reference levels for imaging in Africa: review and proposal. *Eur J Radiol.* 2016;85(1):97-104. doi:10.1016/j.ejrad.2015.115.10.023

156. Badu-Peprah A, Seffah JD, Darkey DE, Tetteh S, Botwe BO. Imaging in cancer diagnosis in West Africa: challenges and prospects. *J Glob Oncol.* 2019;5:1-6. doi:10.1200/JGO.19.00116

157. Wilson ML, Fleming KA, Kuti MA, Looi LM, Lago N, Ru K. Access to pathology and laboratory medicine services: a crucial gap. *Lancet.* 2018;391(10133):1927-38. doi:10.1016/S0140-6736(18)30458-6

158. Fleming KA, Naidoo M, Wilson ML, Flanigan J, Horton S, Kuti M, et al. An essential pathology package for low- and middle-income countries. *Am J Clin Pathol.* 2017;147(1):15-32. doi:10.1093/ajcp/aqw143

159. Odedina FT, Dankyau M, Adesina A, Omonisi AE, Abudu EK, Rotimi O, et al. Building sustainable cancer research capacity in Africa: the ARGO model. *JCO Glob Oncol.* 2021;7:1377-84. doi:10.1200/GO.21.00115

160. Adisa AO, Arowolo OA, Akang EE, Omonisi AE, Odesanmi WO. Metastatic patterns of breast cancer in Nigerian women: a clinicopathological study. *Afr Health Sci.* 2011;11(2):225-30. doi:10.4314/ahs.v11i2.69417

161. Iliyasu Y, Ladipo JK, Akang EE, Aghadiuno PU, Campbell OB. A study of gastric cancer in Ibadan, Nigeria: a 15-year review. *Afr J Med Med Sci.* 1998;27(3-4):179-83. PMID:10497656.

162. Ogundiran TO, Adebamowo CA, Adenipekun AA, Coker AO, Oyesegun AR, Campbell OB. Breast cancer in Nigerian women: epidemiology and risk factors. *Afr J Med Med Sci.* 2003;32(2):179-84. PMID:15030041.

163. Chukwubuike KE, Anyanwu SN, Eke CB, Oguonu T. Gastrointestinal malignancies in Enugu, Nigeria: a ten-year histopathological review. *Niger J Clin Pract.* 2020;23(6):755-61.

doi:10.4103/njcp.njcp 52-20.

164. Ukaegbu JN, Nwafor CC, Akindé OR, Ojo BA, Ezeome ER, Omonisi AE, et al. Cancer epidemiology and patterns in Nigeria: a 15-year multicentre review. *Afr J Med Med Sci*. 2022;51(1):45-55.

165. Parkin DM. The role of cancer registries in cancer control in sub-Saharan Africa. *Afr J Med Med Sci*. 2014;43(Suppl 1):1-8. PMID:26162276.

166. Stefan DC. Cancer care in Africa: an overview of resources. *J Glob Oncol*. 2015;1(1):30-6. doi:10.1200/JGO.2015.000406

167. Sankaranarayanan R, Swaminathan R, Brenner H, Chen K, Chia KS, Chen JG, et al. Cancer survival in Africa, Asia, and Central America: a population-based study. *Lancet Oncol*. 2010;11(2):165-73. doi:10.1016/S1470-2045(09)70335-3

168. Vanderpuye V, Grover S, Hammad N, Pooja P, Simonds H, Olopade F, et al. An update on the management of breast cancer in Africa. *Lancet Oncol*. 2017;18(9):e556-67. doi:10.1016/s1470-2045(17)30414-9

169. Jemal A, Torre LA, Soerjomataram I, Bray F, Forman D. Cancer burden in low- and middle-income countries: current status and future projections. *Nat Rev Cancer*. 2020;20(10):601-17. doi:

170. Bray F, Laversanne M, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin*. 2018;68(6):394-424. doi: 10.3322/caac.21492